

PROTOCOL SUPPORT FOR A NEW SATELLITE-BASED AIRSPACE
COMMUNICATION NETWORK

Yadong Shang, Michael Hadjitheodosiou, John Baras

Center for Satellite & Hybrid Communication Networks
Institute for Systems Research, University of Maryland,

College Park, MD 20742, USA
shangyd@glue.umd.edu, michalis@isr.umd.edu, baras@isr.umd.edu

ABSTRACT
We recommend suitable transport protocols for an
aeronautical network supporting Internet and data
services via satellite. We study the characteristics of an
aeronautical satellite hybrid network and focus on the
problems that cause dramatically degraded performance
of the Transport Protocol. We discuss various
extensions to standard TCP that alleviate some of these
performance problems. Through simulation, we identify
those TCP implementations that can be expected to
perform well. Based on the observation that it is
difficult for an end-to-end solution to solve these
problems effectively, we propose a new TCP-splitting
protocol, termed Aeronautical Transport Control
Protocol (AeroTCP). The main idea of this protocol is
to use a fixed window for flow control and one
duplicated acknowledgement (ACK) for fast recovery.
Our simulation results show that AeroTCP can maintain
higher utilization for the satellite link than end-to-end
TCP, especially in high BER environment.

1 INTRODUCTION
World airline passenger traffic growth is currently
approximately 6% per annum and this figure is likely to
drop only slightly in the next fifteen years. The current
National Airspace System (NAS) is quickly becoming
overburdened by increases in air traffic because of the
old technologies and legacy systems [1]. The current
systems do not support improvements needed for
increased capacity, safety and security, not to mention
the demands of new data link applications.

Recognizing the potential for significant improvements
in over-ocean coverage afforded by the use of satellite
technology for aeronautical communications, the airline
industry is developing a design for a global satellite-
based communications system to meet the needs of the
aviation industry [2]. The expected advantages of the
satellite systems for aeronautical communications also
include high communication capacity, low message
propagation delay, suitability to free flight concepts,
and other economic benefits.

Several Companies (e.g., Inmarsat, Iridium, Boeing)
have announced plans to use satellite technologies to

provide commercial broadband data services for airline
passengers [3, 4]. These systems are expected to offer
Internet access and to support virtual private networks
(VPN) for passengers in flight. However, the
performance of data communications protocols and
applications over such systems is the subject of heated
debate in the research community, especially the
transport protocol in the Internet TCP/IP protocol suite
[5]. Some researchers insist that TCP will work suitably
in a satellite environment, while others have suggested
satellite specific protocol options for improved
performance, and still others claim that TCP cannot
work effectively over satellite channels.

In this paper, we will evaluate how well TCP performs
in aeronautical satellite networks. The remainder of the
paper is organized as follows: in section 2, we discuss
the future aeronautical satellite systems that plan to
provide Internet access for passengers, focus on the
special characteristics of aeronautical satellite
environment that impact transport layer protocol
performance. In section 3, we describe various TCP
flavors and TCP extension that alleviate some of TCP
performance problems in satellite environment.
Through analysis and simulation, we identify those
TCP implementations that can be expected to perform
reasonably well for Internet applications in satellite
networks. Based on the observation that it is difficult
for an end-to-end solution to solve the performance
problems effectively in the satellite hybrid networks,
we next investigate in section 4 the improvement by
using TCP splitting protocol in satellite gateway. We
proposed a new splitting based TCP protocol for
satellite connection, which we called AeroTCP. This
new protocol uses a fixed window for congestion
control and flow control, use one duplicated ACK for
fast recovery. Based on the simulation result, we
conclude that our splitting protocol has significant
improvement over end-to-end TCP solution in term of
link utilization and response time. This AeroTCP is the
suitable transport protocol for the future aeronautical
satellite networks.

2 AERONAUTICAL SATELLITE
NETWORK

Figure 1 Aeronautical Satellite Network

The future aeronautical satellite systems will offer
Internet connections at up to broadband (tens of Mbps)
data rates via networks of GEO or LEO satellites [6].
Here, we consider architecture based on packet
switching that is fully compatible with the TCP/IP
protocol suite. Figure 1 illustrates the general topology,
in which users on aircraft access the Internet via the
satellite system.

This system will be composed of three major segments:
cabin segment with on-board networks, space segment
for interconnection of the cabin with the terrestrial
networks, ground segment which provides the
interconnection to the terrestrial personal and data
networks as well as the Internet backbone.

For the near-term future and any evolutionary approach
towards aeronautical multimedia communications, a
broadband network based on GEO satellites seems to be
the first option. However, a GEO solution for the
purpose of future broadband communications to aircraft
in flight reveals several problems, such as the coverage
problems at higher latitudes and the extreme antenna
steering requirements at lowest elevation angles. With a
LEO or MEO solution, in particular, potential system
capacity limitations and latency for real-time
communications could be reduced. On the other hand,
besides system costs, especially networking complexity
tend to increase while moving to lower orbits. Satellite
handover will become a major issue, and inter-satellite
links may be necessary at least for LEO constellations
to provide connectivity over large ocean areas. Since
we are focus on the transport protocol and for
simplicity, we will use GEO bent-pipe satellite for our
analysis and simulation.

The service scenario considers travelers in aircraft on
the move. Since people are becoming more and more

used to their own communications equipment, such as
mobile phones and laptops with Internet connection,
either through a wired or wireless network interface.
Thus the cabin segment will consist of wireless access
technologies (Such as Blue tooth, Wireless LAN) as
well as conventional IP fixed wired networks.

The main characteristics of the end-to-end path that
affect transport protocol performance are long
propagation delay, large bandwidth delay product, high
bit error rate, and bandwidth asymmetry. If part of the
communication path includes a satellite channel, these
parameters can vary substantially from those found on
wired networks.

Long propagation delay: The three main components
of delay are propagation delay, transmission delay, and
queuing delay. In the broadband satellite case, the
dominant portion is expected to be propagation delay.
GEO satellite is about 36,000km above the earth. The
propagation delay from the earth up to the satellite and
from the satellite down to the earth is about 125ms.
Therefore a typical round trip time (RTT) for two-way
system is about 500ms plus the delay for terrestrial
networks.

Large bandwidth-delay product: We assume here
that the GEO satellite operates on K/Ka band to provide
broadband connection for aircraft. The bandwidth delay
product (e.g., 20Mbps*580ms RTT) in this system is
very large. To fully utilize such channel, we need to put
that much of data (equal to bandwidth-delay product)
into the link. Since TCP will send new data until it
receives the ACKs for old data, that means TCP
window should be at least the bandwidth delay product.

High bit error rate: In satellite channel, bit error rate
of the order of 10-6 are often observed. This is primarily
because the existing systems with legacy equipment
and many existing transponders were optimized for
analog voice and video services. New modulation and
coding techniques, along with higher-powered
satellites, should help to make bit error rate very low
for GEO system.

Bandwidth asymmetry: Satellite networks can be
asymmetric in several ways. Some satellite networks
are inherently bandwidth asymmetric, such as those
based on a direct broadcast satellite (DBS) downlink
and a return via a dial-up modem line. For purely GEO
or LEO system, bandwidth asymmetries may exist for
many users due to economic factors.

In addition, an aeronautical satellite network has some
specific network characteristics.

Mobile Aircraft: In this network, passengers inside the
aircraft connect to the aircraft gateway using their own
equipments via wired or wireless connections. The
aircraft gateway connects to the ground network via a
bent-pipe satellite. The mobility of the aircraft will put
addition track requirements for the antennas on the
aircraft and the satellite.

En-route Low BER: When the aircraft is en-route,
there are no obstacles (such as rain, cloud) between the
aircraft and the satellite. It is possible that the satellite
link maintains connectivity and achieves “fiber-like”
quality (BER of 10-10) most of the time.

FIFO Satellite Channel: The bent-pipe satellite link is
a FIFO channel and there is no out-of-order delivery
between satellite gateways. Congestion over the
satellite link is impossible if the packets are sent at the
rate of the satellite bandwidth.

Intermittent connectivity: Due to handover and
relative geometric position changes of aircraft and
satellites, intermittent connectivity are expected in
aeronautical network with typical during of several
seconds to several minutes.

Variable Round Trip Times: Because the aircraft fly
around the world, the propagation delay to and from the
satellite varies over time. The variance of the RTT can
be as large as 80ms. The impact of the variation to TCP
is an open problem in literature.

In summary, we assume the aeronautical satellite
networks characterized by high BER, high bandwidth
delay product, long delay. Although the K/Ka band
satellite can provide higher bandwidth than Ku band,
satellite bandwidth is still a scarce resource compared
to the bandwidth provided by optical fibers in the
terrestrial networks. Therefore, we assume the satellite
link is the bottleneck of the system.

3 END-TO-END TCP PERFORMANCE
In this section, we describes basic TCP operation,
identifies protocol options helpful to improve TCP
performance in satellite environment. We also quantify
how well different TCP implementations perform in a
satellite environment for Internet services.

3.1 TCP OPERATION
TCP is a connection-oriented, end-to-end, process-to-
process reliable transport protocol [7]. TCP source and
destination port combined with IP source and
destination addresses uniquely identity each TCP
connection. There are several mechanisms in TCP to
ensure those functions, such as flow control, congestion
control and error control.

Flow control: TCP uses a sliding window to achieve
flow control. The TCP receiver sets the receive window
(RCVWND) field in the acknowledgement to its free
buffer size so that the sender will never overflow the
receiver’s buffer.

Congestion control [8]: The TCP sender maintains a
state variable CWND for congestion window size.
While RCVWND is used to guard that the sender will
not overload the receiver buffer, the CWND is used to
guard that the sender will not overload the network. The
TCP sender can send at most the minimum of
RCVWND and CWND window worth packets without
receiving any ACK. In the most popular TCP Reno,
there are four algorithms used for congestion control,
which are slow start, congestion avoidance, fast
retransmit, and fast recovery. Slow start is used upon
the start of a new connection to probe the network
bandwidth, it increases the CWND by one Maximum
Segment Size (MSS) when an ACK is received, which
results in increasing congestion window exponentially.
TCP stays in slow start until its CWND is greater than
the slow start threshold. After that TCP gets into
congestion avoidance, it increases CWND about one
MSS per round trip time (RTT). Fast retransmit
algorithm is triggered when a fixed number of duplicate
acknowledgements (usually 3) are received. TCP
retransmits the potential lost packet indicated by the
acknowledgement and cuts its CWND to half. After
that, it inflates its CWND by one MSS when a duplicate
acknowledgement is received. If there is one and only
one packet lost in a single window, the inflation can
increase the CWND to the original CWND before the
loss after about half RTT. After that TCP can send a
new packet when each duplicate acknowledgement is
received if allowed by the RCVWND. Finally it will
send half a window new packets when it receives the
first non-duplicate acknowledgement. TCP Reno
doesn’t like TCP Tahoe, which does not have the fast
recovery algorithm and sends half a window packets in
burst after the loss has been recovered.

Error control: Error control is the main component of
reliable protocols, which includes error detection and
error recovery. TCP uses acknowledgement packet,
timer and retransmission to achieve error control. TCP
uses cumulative acknowledgement, which means when
a packet gets lost, it prevents the acknowledgement
from being advanced and the window cannot slide until
the lost packet is recovered. The sliding window
mechanism actually ties the flow control, congestion
control and error control together and it becomes
vulnerable when there are losses due to congestion loss
and packet corruptions in the network.

3.2 TCP FLAVORS AND EXTENSION
As originally specified, TCP did not perform well over
satellite networks (or high latency networks in general)
for a number of reasons related to the protocol syntax
and semantics. Over the past decade, a number of TCP
flavors and extensions have been specified which
improve upon the performance of the basic protocol in
satellite environments [9, 10].

Large Initial Window [11]: For a connection with
large RTT, TCP spends a long time in slow start before
reaching the available bandwidth. The time taken by
TCP slow start to reach the satellite bandwidth (SatBW)
is about RTT * log2 (SatBW * RTT) when every TCP
segment is acknowledged. For short transfers, they
could be finished in slow start, which obviously does
not use the bandwidth efficiently. Some researchers
propose to use a large initial window up to 4380 bytes
(or a maximum of 4 segments) rather than 1 segment.
Thus Files less than 4K bytes (many web pages are less
than this size) can finish their transfers in one RTT
rather than 2, 3.

Window Scaling [12]: In TCP protocol syntax, the
receiver advertised window in the TCP header cannot
be more than 64K bytes, which limits the two-way
throughput to roughly 1Mbps in GEO satellite
networks. Window Scaling is proposed to solve this
problem, which significantly increases the amount of
data that can be outstanding on a connection by
introducing a scaling factor to be applied to the window
field. This is particularly important for the satellite
links, which require large windows to fully utilize their
high bit rate.

Selective Acknowledgements (SACK) [13]: Because
TCP Reno (popularly used in many systems) treats all
losses as congestion in the network. The link layer error
can causes TCP to drop its window to a small size and
leads to poor performance. TCP SACK can convey
non-contiguous segments received by the receiver in
the acknowledgements so that the sender can recover
error much faster than TCP Reno, which well know can
recover only on loss per RTT.

Path MTU discovery [14]: This option allows the TCP
sender to probe the network for the largest allowable
Message Transfer Unit (MTU). Using large MTUs is
more efficient to reduce the overhead and helps the
congestion window to open faster.

Forward Error Correction (FEC): FEC is usually
used in satellite communication to reduce the bit error
rate. However, FEC consumes some bandwidth by
sending redundant information together with the data
and transforms the original random error nature to one
with burst error.

In this work, we are interested in quantifying the
performance of TCP implementations with those
standard enhancements. Note that even though some of
these options have been specified for over several
years, not all implementations use them today. It is
important to emphasize that all of the above
implementations would be regarded as conformant to
the TCP standards; in practice, many more variants of
TCP exist.

Figure 2 Experiment setup for End-to-end TCP solutions

3.3 END-TO-END TCP PERFORMANCE
In this section we study how well different TCP
implementations perform in aeronautical satellite
network for Internet services. The detail of the
simulation setup can be found in [15].

The experiment setup of this simulation is shown in
figure 2. A K/Ka-band GEO satellite operates in the
microwave switch mode, in which it behaves as a bent-
pipe transponder. Its spot beam is used to establish the
communication link between the satellite and the fixed
ground terminal, which provides the interconnection to
Internet backbone. The aircraft, which includes on-
board network, communicates with satellite by its
tracking antenna. The client on the aircraft will
download files from the ground server by using FTP
during the flight. For each scenario, the forward and
return links have data rate 5Mbps and 1Mbps,
respectively. Both the client and the server have TCP
buffer size of 65536 bytes.

To maintain high throughput for large file transfers, the
TCP congestion window must be large. This implies
that the congestion avoidance and loss recovery
mechanisms are very important in determining
performance. In this simulation, we examine the
performance of four variants of TCP loss recovery and
congestion control: Tahoe (Fast Retransmission), Reno
(Fast Retransmission and Fast Recovery), SACK (Reno
+ Selective ACK), and Window Scaling (SACK +
Window Scaling) [16].

1E-9 1E-8 1E-7 1E-6 1E-5
0

100

200

300

400

500

Response Time for File Transfer

R
es

po
ns

e
Ti

m
e

(S
ec

on
d)

BER
(Data Rate: 5Mbps, FTP file Size: 1.6MB, Buffer Size: 65536B)

 Tahoe
 Reno
 SACK
 Window Scaling

Figure 3. TCP performance for satellite link (1.6MB)

Figure 3 shows the TCP performance for the satellite
link with FTP file size of 1.6MB. We can see that the
response time to download a file increases
exponentially with the BER. That’s because the TCP

congestion window cannot recovery quickly when there
are lots of packet losses (high BER). For same BER, the
Windows Scaling and SACK have better performance
than Reno, Tahoe, where Tahoe need the largest
response time to download the same file. The
differences of response time are more obvious when the
BER becomes large.

We see that Window Scaling and SACK have almost
same performance. That is because in these scenarios,
both the client and the server use TCP buffer size of
65536 bytes. The congestion window of TCP
connection cannot be larger than the buffer size.
Window scaling will have better performance than
SACK when we have large buffer size. Figure 4 shows
this effect. Here the client will download file of size
1.6MB. When the receiver’s buffer size is less than
65536 bytes, the Window scaling and SACK have same
performance. Actually window scaling is not used in
this case. When the buffer size is larger than 65536
bytes, window scaling needs less time than SACK to
download the same file. The difference in the response
time will become more obvious in low BER and for big
file.

1k 10k 100k 1M 10M
0

30

60

90

120

150

TCP Performance vs Buffer Size

R
es

po
ns

e
Ti

m
e

(S
ec

on
d)

Buffer Size (Byte)
(Data Rate: 5Mbps, FTP file Size: 1.6MB)

 Window Scaling
 SACK

Figure 4. TCP performance with different buffer size

From previous results, we can conclude that by
standard TCP with some enhancements for the satellite
communications system with our configuration and
system architecture, basic communication requirements
can be meet. If TCP/IP protocols are going to be
adopted in the future satellite system, some
modifications of the protocol stacks will be necessary to
achieve better performance. In particular, TCP SACK
with window scaling option has better performance
than other TCP flavors in our scenario. It also achieves
high link utilization when the link BER is relative low.
However, when the link BER becomes high, the end-to-

end solutions cannot solve those problems effectively.
We will discuss this problem in next section.

4 TCP SPLITTING PROTOCOL
Although TCP can work well over GEO satellite links
under certain conditions, there are cases for which even
the best end-to-end modifications cannot ensure good
performance. Furthermore, in an actual network with a
heterogeneous user population, users and servers cannot
all be expected to be running satellite-optimized
versions of TCP. This has led to the practice of splitting
transport connections. In this section we describe
unsolved problems by use end-to-end TCP solutions,
the design of our splitting protocol, and the
performance comparison of the splitting protocol and
end-to-end solutions.

4.1 Unsolved problems
Despite the progress on improving TCP, there remain
some vexing attributes of the protocol that impair
performance over satellite links. The end-to-end
enhancements cannot solve these problems, or not very
effectively.

Small operational window: Satellite TCP connections
need large windows to fully utilize the available
bandwidth. However it takes much longer for satellite
TCP connections than for terrestrial TCP connections to
reach the target window size because of the large
propagation delay and the slow start algorithm in TCP.
And the window multiplicative decrease strategy makes
the hard gained large TCP window very vulnerable to
congestion. The misinterpretation of link layer
corruption as congestion makes this situation even
worse [17]. In the best case, the packet loss does not
cause timeout and TCP can stay in congestion
avoidance phase rather than in slow start, the additive
increase strategy makes the window to grow very
slowly. From the above observations, we can see that
even if the window scaling option is available, it is
difficult for satellite TCP connections to actually
operate with large windows.

Asymmetric link: With respect to transport protocols,
the forward throughput achievable depends not only on
the link characteristics and traffic levels in the forward
path but also on those of the reverse path. The
congestion in reverse path could lead to poor
performance in the forward link because TCP uses
ACKs to clock out data. To alleviate this problem,
ACK filtering was proposed to drop the ACKs in the
front of the IP queue by taking advantage of the
cumulative acknowledgement strategy in TCP [18]. The

situation is even worse for two-way transfers. When the
users are sending data and browsing the web at the
same time, a lot of data packets could be queued in
front of ACKs in a FIFO queue, which increases the
ACKs delay dramatically. In this case, a priority queue
can be used to schedule the ACK to be sent first.

TCP fairness: For bulk transfer, TCP throughput is
inverse proportional to RTT, so TCP connection with
large RTT does not get its fair share of the bandwidth
when it competes with the connections with shorter
RTT [19]. It is difficult for end-to-end solutions to
solve this fairness problem. Using the Constant-rate
additive increase policy can correct this bias. However,
it is difficult to implement in a heterogeneous network.

Because the feedback information of the satellite is
either delayed too long or too noisy or both, end-to-end
schemes cannot solve these problems very effectively.
An alternative to end-to-end schemes is to keep the
large window of packets in the network such as at the
satellite gateway between the satellite and aircraft
platform. Considering the interoperability issue, we
propose a connection splitting based scheme to solve
those problems.

4.2 Splitting protocol
The idea behind split connections is to shield high-
latency or noisy network segments from the rest of the
network, in a manner transparent to applications. Figure
5 illustrates the general split case, in which an end-to-
end TCP connection is split into 3 connections at the
aircraft gateway and ground gateway. One connection
is from the Internet server to the ground gateway,
another one is from the ground gateway to the aircraft
gateway, and the last one is from the aircraft gateway to
the client in aircraft. We consider the data transfer from
the Internet servers to the client in aircraft. Ground
gateway sends premature acknowledgements to the
Internet servers and takes responsibility to relay all the
acknowledged packets to the aircraft gateway reliably.
The aircraft gateway does the same job to relay the data
to the client.

The goal of splitting connections is for end users to be
unaware of the presence of an intermediate agent, other
than improved performance. From the perspective of
the hose in the wide-area Internet, it is communicating
with a well-connected host with a much shorter latency.
For the satellite link between the ground gateway and
the aircraft gateway, a satellite optimized transport
protocol can be used.

Figure 5 TCP Splitting protocol for Aeronautical Satellite Networks

Because GEO satellite channel is a FIFO channel, there
is no out-of-order routing. And congestion over the
satellite link is impossible if the packets are sent at the
rate of the satellite bandwidth. The above observations
motivate us to decouple the congestion control and
error control in TCP first and then design more efficient
and effective congestion and error schemes with our
specific network characteristics in mind. We design a
new TCP splitting protocol, which we called
Aeronautical Transport Control Protocol (AeroTCP),
for the satellite connection. The main idea is to use one
duplicate ACK to trigger the fast retransmission at the
satellite gateway and to use a fixed window size for the
satellite TCP connection. This implementation of this
idea will be discussed in detail in the following.

Flow Control: We still use a sliding window for flow
control, however, here the window are fixed for each
satellite connection. For a normal router, they only have
the functions up to IP layer, while the satellite gateway
is able to process TCP packets. All the TCP packets
received from the servers are forwarded to the TCP
received buffer of the ground gateway and they are
moved from the received buffer to send buffer for
transmission. The receive buffer and send buffer can be
implemented by one physical buffer.

The buffer size assigned to each connection at the
satellite gateway has a direct impact on the end-to-end
TCP throughput. Consider the traffic from Internet
server to the client on aircraft, assume there is only one
connection in this system, the buffer size assigned to
the TCP connection is Buff and the effective satellite

bandwidth is SatBW. The date in the satellite pipe is
SatWin and the advertised receiver window for the
server is RecvWin. The round trip time for the satellite
connection is SatRTT and for the ground connection is
GndRTT. Then the system reaches the steady state, the
input rate of the queue at the ground gateway should be
equal to the output rate of the queue, i.e., RecvWin /
GndRTT = SatWin / SatRTT. The throughput of the
connection is min (SatBW, Buff / (SatRTT +
GndRTT)) and the backlog packets are max (o, Buff –
SatBW * (SatRTT + TerrRTT)) [20]. From the above
analysis, we can see that the buffer size can become the
bottleneck of the end-to-end TCP performance if it is
less than the bandwidth delay product. However when
the buffer size is greater than the bandwidth delay
product, there are packets backlogged at the satellite
gateway and these backlogged packets cannot
contribute to the throughput and only increase the
queuing delay.

When there are multiple connections in this system, the
bandwidth available to each connection is a function of
the number of connections and their activities. For
simplicity, we assign each connection a static peak rate,
which is the maximum bandwidth it can achieve and is
much smaller than the total satellite bandwidth, and the
buffer size is set corresponding to that peak rate.

We assume large but not infinite buffer is available at
the client and the TCP flow control is still enforced so
that the gateway will not overflow the receiver’s buffer.

Congestion Control: For the satellite connections, the
satellite link bandwidth to be shared among them is
fixed and known. Besides the number of connections
and the traffic arrival pattern are known. All this
information is available at the satellite gateway.
Therefore there is no need to use slow start to probe the
bandwidth and use additive increase and multiplicative
decrease congestion avoidance to guarantee fair
resource sharing as in the distributed case.

In our scheme, we cancel all the congestion control
algorithms in TCP. The gateway can send packets as
long as there are packets in the buffer and the receiver’s
window allows sending. Also there is no need to
exponentially back off the timer after timeout because
congestion is impossible over the satellite link. Timer is
used only for error recovery. As long as there are
packets buffered at the satellite gateway, the satellite
link can be fully utilized. When the traffic load
increases, the buffers begin to be filled up and the
congestion is back pressured to the sources through the
advertised receiver windows. When the traffic load
decreases, the buffers begin to be emptied and larger
advertised receiver windows are sent to the source so
the sources can speed up. This way satellite link
efficiency is achieved.

Error Control: TCP depends on duplicate
acknowledgements and timer for error control because
out of order packet arrivals are possible in the wide area
networks, the fast retransmit algorithm is triggered after
three rather than one or two duplicate
acknowledgements are received. The three duplicate
acknowledgements requirement puts a high burden on
the return channel bandwidth. The high bit error rate of
the satellite link can cause multiple packet losses in one
RTT and may lead to timeout. When the retransmitted
packets are lost, timer could be the only means for error
recovery. However, timer has to be conservative and is
usually set much larger than the round trip delay to
make sure the packet does leave the networks. These
conservative loss detection and recovery schemes in
TCP are not effective in satellite networks and should
be enhanced.

In our scheme, we explore the specific characteristics of
our network. Firstly, because congestion is impossible
for the satellite connections and any loss must be
caused by the link layer corruption. So the error
recovery scheme can operate independently with the
congestion control scheme. Secondly, the satellite link
is a FIFO channel and out of order packet arrivals are
impossible.

We design a scheme for error control by using one
duplicated ACK for fast recovery. We keep track of the

packets in sequence space of all acknowledged packets.
Whenever a duplicated acknowledgement is received,
we just assume that packet is lost and retransmit it.
During the recovery, we use the same idea as in TCP
NewReno [21]. We use partial ACKs to calculate the
burst loss gap and send all the potentially lost packets
beginning from the partial acknowledgement number.
Although it is possible that the sender could retransmit
packets that have already been correctly received by the
receiver, it is more effective in recovering burst errors
(popular in satellite environment). Timer is still used as
the last resort for loss recovery, however, after timer
expires, two copies of the lost packet are sent to
increase redundancy.

4.3 TCP Splitting Protocol Performance

Figure 6 Experiment setup for TCP splitting Protocol

To test our splitting scheme, we setup a simulation
model as shown in figure 6. A client downloads a file of
1.6M bytes from a server via a satellite link. The link
delay between the hybrid gateway and the client is
250ms and the link delay between server and gateway
is 40ms. Therefore the RTT between the server and the
client is 580ms. The satellite link bandwidth is DS1
(1.544Mbps) and the ground link is 10Mbps. The
transport protocol for the ground connection is normal
TCP SACK, while we use our TCP splitting scheme for
the satellite connection. We assume the satellite link
between the gateway and the client is noise channel
with various bit error rate, while the ground link has no
error. The statistics we collect is link utilization and
link throughput of the two downstream links.

Figure 7 shows the utilization for our scheme and for
TCP connection splitting scheme. The TCP connection
splitting scheme uses TCP SACK for both the satellite
connections and terrestrial connections. When the bit
error rate is very low, both schemes can achieve very
high throughput since the TCP can actually operate
with large window. For TCP connection splitting
scheme, when the bit error rate increases up to 10-6, the
link layer corruption causes the satellite TCP to drop its
congestion window, which leads to degraded
performance. When the BER increases to 10-5, the

retransmitted packets can get lost again and TCP may
have to wait for the timeout to recover the error. After
timeout, the congestion window is set to one and TCP
enters slow start and the link utilization is very low.
While for our scheme, the TCP can send packet at the
rate of bandwidth as long as there are packets in the
buffer and the receiver has enough buffer. The
utilization is drop when the BER increases to 10-5,
which is because lots of packets are lost due to layer
error corruptions.

1E-9 1E-8 1E-7 1E-6 1E-5 1E-4
0.0

0.2

0.4

0.6

0.8

1.0

Utilization of Satellite Channel

U
til

iz
at

io
n

BER

 AeroTCP
 TCP splitting

Figure 7 Utilization for different bit error rates

1E-9 1E-8 1E-7 1E-6 1E-5 1E-4

0

500

1000

1500

Response time of FTP application

FT
P

 R
es

po
ns

e
Ti

m
e

BER

 End-to-End TCP
 TCP Splitting
 Our Scheme

Figure 8 Response time for FTP application

It is important to compare our scheme with the end-to-
end TCP solutions. Figure 8 shows the FTP response
time for end-to-end TCP, TCP splitting, and our scheme
to download a file of 1.6M bytes. The TCP splitting
uses TCP SACK for both the satellite connections and
terrestrial connections. We can see that the TCP
splitting has better performance than end-to-end TCP
because in TCP splitting, the terrestrial connection can

operate with large window and send packets to gateway
faster due to no error. It is interesting that performance
is improved if we just use splitting protocol, although
not noticeable when the BER is high. In the other hand,
our scheme has the best performance than both end-to-
end TCP and TCP splitting. This is because both the
satellite connection and terrestrial connection of our
scheme can operate with large window. The response
time is more obvious when the BER increase to 10-5.

In summary, we have described the design and
performance of a satellite-optimized transport protocol,
AeroTCP. AeroTCP inherently incorporates many of
the features that have been proposed or adopted as TCP
options for improved satellite performance. AeroTCP
allows for the use of rate-based congestion control and
is well matched to satellite networks.

5 CONCLUSIONS

In this paper, we have investigated the performance of
IP-Compatible transport protocols over satellite links
from several perspectives. We observed degradation in
TCP performance for large bandwidth-delay product
networks such as aeronautical satellite systems. If the
right TCP options are used and congestion is light, TCP
can work well for large file transfers even over GEO
links. Because it is difficult for an end-to-end TCP
solution to solve the problems in the aeronautical
satellite networks, we propose a connection splitting
based solution, AeroTCP, which is designed for the
satellite connections by taking advantage of the specific
characteristics of the satellite networks. Our simulation
results show that our scheme can maintain high
utilization of the satellite link and has better
performance than end-to-end solutions.

Acknowledgements: This work is supported by the
Center for Satellite and Hybrid Communication
Networks, under NASA cooperative agreement NCC8-
235 and NASA cooperative agreement NAG3-2844.

REFERENCES
1. Oagur Ercetin, Michael O. Ball, Leandros

Tassiulas, “Next Generation Satellite systems for
Aeronautical Communications”, Technical
Research Report of National Center of Excellence
in Aviation Operations Research, NEXTOR T.R.
2000-1, ISR T.R. 2000-20

2. M. Werner, M. Holzbock, “System Design for
Aeronautical Broadband Satellite
Communications”, In Proceedings Int. Conference
on Communications (ICC’02), Paper # J03-3, 2002

3. Peter W. Lemme, Simon M. Glenister, Alan W.
Miller, “Iridium Aeronautical Satellite
Communications”, IEEE AES System magazine,
November 1999

4. W. H. Jones, M. de La Chapelle, “Connexion by
BoeingSM-Broadband Satellite Communication
System for Mobile Platforms”, Military
Communications Conference, 2001. MILCOM
2001. Communications for Network-Centric
Operations: Creating the Information Force. IEEE,
Volume: 2, 2001 Page(s): 755 -758 vol.2.

5. W. Stevens, “TCP/IP Illustrated”, Volume 3,
Addison Wesley, 1996.

6. Walter J. Gribbin, “Aeronautical Satellite
Networks”, IEEE 1988, CH2674-0-11/88/0000-135

7. J. Postel, “Transmission Control Protocol”, Internet
RFC 793, 1981.

8. M. Allman, V. Paxson, and W. Stevens, “TCP
Congestion Control”, RFC 2581, 1999

9. M. Allman, D. Glover, and l. Sanchez, “Enhancing
TCP Over Satellite Channels using Standard
Mechanisms”, RFC 2488, 1999

10. M. Allman(ed), S. Dawkins, D. Glover, J. Griner,
D. Tran, T. Henderson, J. Heidemann, J. Touch, H.
Kruse, S. Ostermann, K. Scott, and J. Semke,
“Ongoing TCP research Related to Satellites”, RFC
2760, 2000

11. M. Allman, S. Floyd, C. Partridge, “Increasing
TCP’s Initial Window”, Internet RFC 2414,
September 1998.

12. V. Jacobson, R. Braden, and D. Borman, “TCP
Extensions for High performance”, Internet RFC
1323, 1992

13. M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanow, “TCP Selective Acknowledgement
Options”, Internet RFC 2018, 1996.

14. J. Mogul and S.Deering, “Path MTU discovery”,
Internet RFC 1191, 1990.

15. Yadong Shang, Michael, Hadjitheodosiou, and
John Baras, “Using Broadband Satellite Systems to
Support Aeronautical Communications”, Proc. 21st
International Communications Satellite Systems
Conference and Exhibit, 15-19 Apr. 2003,
Yokohama, Japan.

16. K. Fall and S. Floyd, “Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP”,
ACM Computer Communications Review, Vol. 26,
no. 3, pp. 5-21, July 1996.

17. Xiaoming Zhou, Xicheng Liu, and John Baras,
“Flow Control at Satellite Gateways”, Technical
Research Report, ISR, University of Maryland,
CSHCN TR 2002-19, http://www.isr.umd.edu

18. H. Balakrishnan, V. Padmanabhan, and R. Katx,
“The Effects of Asymmetry on TCP performance”,
Proceedings of Third ACM/IEEE MobiCom
Conference, pp. 77-89, Sept. 1997.

19. T. Lakshman and U. Madhow, “The Performance
of TCP/IP for Networks with High Bandwidth-
Delay Products and Random Loss”, IEEE/ACM
Transactions on Networking, vol. 5, no. 3, pp. 336-
350, June 1997.

20. Xiaoming Zhou and John S. Baras, “TCP over
GEO satellite hybrid networks”, in Proc. IEEE
MilCom Conference, 2002.

21. S. Floyd and T. Henderson, “The New Reno
Modification to TCP’s Fast Recovery Algorithm”,
Internet RFC 2582 (Experimental), April 1999.

PROTOCOL SUPPORT FOR A NEW
SATELLITE-BASED AIRSPACE
COMMUNICATION NETWORK

Yadong Shang, Michael Hadjitheodosiou, John Baras

Center for Satellite & Hybrid Communication Networks
Institute for Systems Research, University of Maryland,

College Park, MD 20742, USA
shangyd@glue.umd.edu, michalis@isr.umd.edu,

baras@isr.umd.edu

2

Contents

Introduction
Aeronautical Satellite Network
End-to-End TCP solution
TCP splitting solution
Conclusion and Future work

3

Introduction

Significance
Increased air traffic volume vs. old communication
system
Use Satellite technology for aeronautical
communication
Internet data services for passengers on flight
TCP/IP protocol support

Objectives
Evaluate TCP performance on aeronautical network
Design a better transport protocol

4

Aeronautical Satellite Network

5

Network Characteristics

Satellite Channel Characteristics
long propagation delay,
large bandwidth delay product,
occasional high bit error rate,
bandwidth asymmetry

Aeronautical network
Mobile Aircraft
En-route Low BER
FIFO Satellite Channel
Intermittent connectivity
Variable Round Trip Time

6

TCP Operation
Flow Control: Sliding window
Received window=receiver Buffer size

Congestion Control: Congestion
window

Slow start
Congestion avoidance
fast retransmission
fast recovery

Error Control:
acknowledgement, timer, and
retransmission

7

End-to-End TCP solution

Priority QueueIncrease ACKs delayBandwidth
asymmetry

Can not use fix window,
TCP SACK for recovery

Drop its congestion
window to a small size

High bit error rate

Window Scaling (multiple
losses in one window)

16bits WindowLarge bandwidth-
delay product

Large Initial Window (4
MSS)

Spend long time in
Slow Start

Long propagation
delay

End-to-End TCP Solution
(Flavors and Extensions)

TCP ProblemsSatellite Hybrid
Network

Other mechanisms: Path MTU discovery, Forward Error
Correction, Ack filtering.

8

Experiment setup

SACK and Window ScalingWindow Scaling
Selective AcknowledgeSACK
Fast Retransmit and Fast RecoveryReno
Fast RetransmitTahoe

9

End-to-End TCP Performance

1E-9 1E-8 1E-7 1E-6 1E-5
0

100

200

300

400

500

Response Time for File Transfer

R
es

po
ns

e
Ti

m
e

(S
ec

on
d)

BER
(Data Rate: 5Mbps, FTP file Size: 1.6MB, Buffer Size: 65536B)

 Tahoe
 Reno
 SACK
 Window Scaling

1k 10k 100k 1M 10M
0

30

60

90

120

150

TCP Performance vs Buffer Size

R
es

po
ns

e
Ti

m
e

(S
ec

on
d)

Buffer Size (Byte)
(Data Rate: 5Mbps, FTP file Size: 1.6MB)

 Window Scaling
 SACK

10

Unsolved problems

Small operational window
Large propagation, slow start and link layer corruption
RecvWin / GndRTT = SatWin / SatRTT
Throughput=min (SatBW, Buff / (SatRTT + GndRTT))
Backlog packets=max(o,Buff–SatBW*(SatRTT+TerrRTT))

BER=1E-7
DS1=1,544,000bps
RTT=580ms

11

Unsolved problems (cont.)

Asymmetric link
Congestion in reverse link: ACK filtering, Priority Queue

TCP Fairness
TCP throughput is inverse proportional to RTT, so TCP
connection with large RTT does not get its fair share of
the bandwidth when it competes with the connections
with shorter RTT

12

TCP Splitting Protocol

AeroTCP
Flow Control: Fixed window for each connection
Congestion Control: FIFO Channel, No congestion
Error Control: One duplicated ACK for fast retransmission and
partial ACK for burst loss recovery

13

TCP splitting protocol performance

1E-9 1E-8 1E-7 1E-6 1E-5 1E-4
0.0

0.2

0.4

0.6

0.8

1.0

Utilization of Satellite Channel

U
til

iz
at

io
n

BER

 AeroTCP
 TCP splitting

1E-9 1E-8 1E-7 1E-6 1E-5 1E-4

0

500

1000

1500

Response time of FTP application

FT
P

R
es

po
ns

e
Ti

m
e

BER

 End-to-End TCP
 TCP Splitting
 Our Scheme

Study Scenario: 2 Connections, TCP/IP/PPP, FTP application, File
size=1.6MB, DS1=1,544,000bps, RTT=580ms (500ms for satellite
link and 80ms for terrestrial link)

AeroTCP (Our scheme), TCP splitting (TCP SACK for both
connections), and End-to-End TCP

14

Conclusion

We observed degradation in TCP performance for large
bandwidth-delay product networks such as aeronautical
satellite systems. If the right TCP options are used and
congestion is light, TCP can work well for large file
transfers even over GEO links.
It is difficult for an end-to-end TCP solution to solve the
problems in the aeronautical satellite networks, our
connection splitting based solution, AeroTCP, can
maintain high utilization of the satellite link and has
better performance than end-to-end solutions.

15

Future Work

Modeling the realistic Ka-band satellite channel
(Uniform BER in OPNET, burst error)
Support other applications and services (FTP,
HTTP, TELNET, Email, Telephone, Video)
Support more aircraft and global coverage (MAC
layer protocol, spot beam handover, ISI)

